Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 628
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673898

ABSTRACT

The absolute configuration and stability of two thianthrene chiral sulfoxides has been determined by means of X-ray single-crystal structure determinations. The analyses and configurations allow verification that the diastereomeric sulfoxides are stable in solution and are not interconverting, which has been suggested in some studies of sulfoxides. The two thianthrene sulfoxides have slightly different Rf values, which allowed their separation using flash chromatography on silica. The spots run back-to-back, which posed a challenge for their separation. The pure, separated compounds in solution remain as separate, single spots on a Thin Layer Chromatography (TLC) plate.


Subject(s)
Sulfoxides , Stereoisomerism , Sulfoxides/chemistry , Crystallography, X-Ray/methods , Models, Molecular , Chromatography, Thin Layer/methods , Phenanthrenes/chemistry , Molecular Structure
2.
Int J Biol Macromol ; 260(Pt 1): 129540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244733

ABSTRACT

Methionine sulfoxide reductase A (MsrA) has emerged as promising biocatalysts in the enantioselective kinetic resolution of racemic (rac) sulfoxides. In this study, we engineered robust MsrA variants through directed evolution, demonstrating substantial improvements of thermostability. Mechanism analysis reveals that the enhanced thermostability results from the strengthening of intracellular interactions and increase in molecular compactness. Moreover, these variants demonstrated concurrent improvements in catalytic activities, and notably, these enhancements in stability and activity collectively contributed to a significant improvement in enzyme substrate tolerance. We achieved kinetic resolution on a series of rac-sulfoxides with high enantioselectivity under initial substrate concentrations reaching up to 93.0 g/L, representing a great improvement in the aspect of the substrate concentration for biocatalytic preparation of chiral sulfoxide. Hence, the simultaneously improved thermostability, activity and substrate tolerance of MsrA represent an excellent biocatalyst for the green synthesis of optically pure sulfoxides.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/analysis , Methionine Sulfoxide Reductases/chemistry , Sulfoxides/chemistry , Methionine
3.
J Chromatogr A ; 1715: 464603, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38168648

ABSTRACT

The influence of mobile phase composition on the efficiency of enantiomer separation by achiral chromatography (ACh) was investigated. The separation was induced by the phenomenon of self-disproportionation of enantiomers (SDE) triggered by their homo and hetero-chiral interactions in an achiral environment. Typically, SDE occurs in apolar mobile phases of weak elution strength, which causes the separation time to extend and the process productivity to deteriorate. To mitigate that effect, we altered the content of a strong solvent (modifier) in the mobile phase by use of a solvent gradient in which the target enantiomer was separated in the presence of the weak solvent, whereas the unresolved mixture of enantiomers was eluted by increasing the modifier content in the mobile phase. This enabled accelerating the solute elution while preserving the separation selectivity. The approach was examined for the separation of nonracemic mixtures of two structurally different compounds that exhibited the SDE effect in ACh, i.e., metalaxyl (MX) and methyl p-tolyl sulfoxide (MTSO). The target compound of the separation was the more abundant enantiomer in the enantiomeric mixture. The process realization was preceded by the determination of the effect of the modifier content on the separation yield for enantiomeric mixtures of MX and MTSO of different enantiomeric excess (ee). In the case of MX, yield of the pure target enantiomer varied from 2 %, for the maximum concentration of the modifier, to 45 % for the minimum modifier concentration and the largest ee used in the experiments. In the case of MTSO, the yield varied from minimum 40 % to maximum 66 %. To predict the process, we employed a dynamic model, in which underlying thermodynamic dependencies were implemented.


Subject(s)
Chromatography , Sulfoxides , Chromatography/methods , Stereoisomerism , Solvents , Sulfoxides/chemistry , Chromatography, High Pressure Liquid/methods
4.
Metabolomics ; 19(11): 89, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37864615

ABSTRACT

INTRODUCTION: Twisted-leaf garlic (Allium obliquum L.) is a wild Allium species, which is traditionally used as aroma plant for culinary purposes due to its unique, garlic-like flavor. It represents an interesting candidate for domestication, breeding and cultivation. OBJECTIVES: The objective of this work was to explore and comprehensively characterize polar and semi-polar phytochemicals accumulating in leaves and bulbs of A. obliquum. METHOD: Plant material obtained from a multiyear field trial was analyzed using a metabolite profiling workflow based on ultra-high performance liquid chromatography-coupled electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) and two chromatographic methods. For annotation of metabolites, tandem mass spectrometry experiments were carried out and the resulting accurate-mass collision-induced dissociation (CID) mass spectra interpreted. Onion and garlic bulb extracts were used as reference samples. RESULTS: Important metabolite classes influencing nutritional, sensory and technological properties were detected and structurally characterized including fructooligosaccharides with a degree of polymerization of 3-5, S-alk(en)ylcysteine sulfoxides and other S-substituted cysteine conjugates, flavonoids including O- and C-glycosylated flavones as well as O-glycosylated flavonols, steroidal saponins, hydroxycinnamic acid conjugates, phenylethanoids and free sphingoid bases. In addition, quantitative data for non-structural carbohydrates, S-alk(en)ylcysteine sulfoxides and flavonoids are provided. CONCLUSION: The compiled analytical data including CID mass spectra of more than 160 annotated metabolites provide for the first time a phytochemical inventory of A. obliquum and lay the foundation for its further use as aroma plant in food industry.


Subject(s)
Garlic , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Garlic/chemistry , Garlic/metabolism , Metabolomics , Chromatography, Liquid , Flavonoids/analysis , Sulfoxides/chemistry , Sulfoxides/metabolism , Plant Leaves/metabolism , Antioxidants/metabolism , Phytochemicals , Receptor Protein-Tyrosine Kinases/metabolism
5.
Molecules ; 28(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298963

ABSTRACT

A challenge in mimicking tyrosinase activity using model compounds is to reproduce its enantioselectivity. Good enantioselection requires rigidity and a chiral center close to the active site. In this study, the synthesis of a new chiral copper complex, [Cu2(mXPhI)]4+/2+, based on an m-xylyl-bis(imidazole)-bis(benzimidazole) ligand containing a stereocenter with a benzyl residue directly bound on the copper chelating ring, is reported. Binding experiments show that the cooperation between the two metal centers is weak, probably due to steric hindrance given by the benzyl group. The dicopper(II) complex [Cu2(mXPhI)]4+ has catalytic activity in the oxidations of enantiomeric couples of chiral catechols, with an excellent discrimination capability for Dopa-OMe enantiomers and a different substrate dependence, hyperbolic or with substrate inhibition, for the L- or D- enantiomers, respectively. [Cu2(mXPhI)]4+ is active in a tyrosinase-like sulfoxidation of organic sulfides. The monooxygenase reaction requires a reducing co-substrate (NH2OH) and yields sulfoxide with significant enantiomeric excess (e.e.). Experiments with 18O2 and thioanisole yielded sulfoxide with 77% incorporation of 18O, indicating a reaction occurring mostly through direct oxygen transfer from the copper active intermediate to the sulfide. This mechanism and the presence of the chiral center of the ligand in the immediate copper coordination sphere are responsible for the good enantioselectivity observed.


Subject(s)
Copper , Monophenol Monooxygenase , Monophenol Monooxygenase/metabolism , Copper/chemistry , Molecular Structure , Phenylalanine , Ligands , Biomimetics , Sulfoxides/chemistry
6.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175462

ABSTRACT

Sulfoxides and selenoxides oxidize thiols to disulfides while being reduced back to sulfides and selenides. While the reduction mechanism of sulfoxides to sulfides has been thoroughly explored experimentally as well as computationally, less attention has been devoted to the heavier selenoxides. In this work, we explore the reductive mechanism of dimethyl selenoxide, as an archetypal selenoxide and, for the sake of comparison, the reductive mechanism of dimethyl sulfoxide to gain insight into the role of the chalcogen on the reaction substrate. Particular attention is devoted to the key role of sulfurane and selenurane intermediates. Moreover, the capacity of these system to oxidize selenols rather than thiols, leading to the formation of selenyl sulfide bridges, is explored in silico. Notably, this analysis provides molecular insight into the role of selenocysteine in methionine sulfoxide reductase selenoenzyme. The activation strain model of chemical reactivity is employed in the studied reactions as an intuitive tool to bridge the computationally predicted effect of the chalcogen on the chalcogenoxide as well as on the chalcogenol.


Subject(s)
Chalcogens , Sulfoxides , Sulfoxides/chemistry , Sulfhydryl Compounds/chemistry , Sulfides , Oxidation-Reduction
7.
Org Biomol Chem ; 21(16): 3417-3422, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37017279

ABSTRACT

Optically pure sulfoxides are noteworthy compounds that find wide applications in various industrial fields. Here, we report a methionine sulfoxide reductase B (MsrB) homologue that exhibits high enantioselectivity and broad substrate scope for the kinetic resolution of racemic (rac) sulfoxides. This MsrB homologue, named liMsrB, was identified from Limnohabitans sp. 103DPR2 and showed good activity together with enantioselectivity towards a series of aromatic, heteroaromatic, alkyl and thioalkyl sulfoxides. Chiral sulfoxides in the S configuration were prepared in approximately 50% yield and 92-99% enantiomeric excess through kinetic resolution at an initial substrate concentration of up to 90 mM (11.2 g L-1). This study presents an efficient route for the enzymatic preparation of (S)-sulfoxides through kinetic resolution.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Sulfoxides/chemistry , Kinetics , Stereoisomerism , Methionine
8.
Chembiochem ; 24(10): e202300056, 2023 05 16.
Article in English | MEDLINE | ID: mdl-36853993

ABSTRACT

Plants of the genus Allium such as chives, onions or garlic produce S-alk(en)yl cysteine sulfoxides as flavor precursors. Two major representatives are S-propenyl cysteine sulfoxide (isoalliin) and S-propyl cysteine sulfoxide (propiin), which only differ by a double bond in the C3 side chain. The propenyl group of isoalliin is derived from the amino acid valine, but the source of the propyl group of propiin remains unclear. Here, we present an untargeted metabolomics approach in seedlings of chives (Allium schoenoprasum) to track mass features containing sulfur and/or 13 C from labeling experiments with valine-13 C5 guided by their isotope signatures. Our data show that propiin and related propyl-bearing metabolites incorporate carbon derived from valine-13 C5 , but to a much lesser extent than isoalliin and related propenyl compounds. Our findings provide new insights into the biosynthetic pathways of flavor precursors in Allium species and open new avenues for future untargeted labeling experiments.


Subject(s)
Allium , Chive , Chive/metabolism , Cysteine/chemistry , Valine , Allium/chemistry , Allium/metabolism , Sulfoxides/chemistry
9.
Anal Chem ; 95(4): 2532-2539, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36652389

ABSTRACT

The development of MS-cleavable cross-linking mass spectrometry (XL-MS) has enabled the effective capture and identification of endogenous protein-protein interactions (PPIs) and their residue contacts at the global scale without cell engineering. So far, only lysine-reactive cross-linkers have been successfully applied for proteome-wide PPI profiling. However, lysine cross-linkers alone cannot uncover the complete PPI map in cells. Previously, we have developed a maleimide-based cysteine-reactive MS-cleavable cross-linker (bismaleimide sulfoxide (BMSO)) that is effective for mapping PPIs of protein complexes to yield interaction contacts complementary to lysine-reactive reagents. While successful, the hydrolysis and limited selectivity of maleimides at physiological pH make their applications in proteome-wide XL-MS challenging. To enable global PPI mapping, we have explored an alternative cysteine-labeling chemistry and thus designed and synthesized a sulfoxide-containing MS-cleavable haloacetamide-based cross-linker, Dibromoacetamide sulfoxide (DBrASO). Our results have demonstrated that DBrASO cross-linked peptides display the same fragmentation characteristics as other sulfoxide-containing MS-cleavable cross-linkers, permitting their unambiguous identification by MSn. In combination with a newly developed two-dimensional peptide fractionation method, we have successfully performed DBrASO-based XL-MS analysis of HEK293 cell lysates and demonstrated its capability to complement lysine-reactive reagents and expand PPI coverage at the systems-level.


Subject(s)
Cysteine , Proteome , Humans , Proteome/chemistry , Lysine , HEK293 Cells , Peptides/chemistry , Mass Spectrometry/methods , Sulfoxides/chemistry , Cross-Linking Reagents/chemistry
10.
J Org Chem ; 87(23): 16115-16126, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36379008

ABSTRACT

Sulfoximines provide aza-analogues of sulfones, with potentially improved properties for medicinal chemistry. The sulfoximine nitrogen also provides an additional vector for the inclusion of other functionality. Here, we report improved conditions for rhodium catalyzed synthesis of sulfoximine (and sulfilimine) carbamates, especially for previously low-yielding carbamates containing π-functionality. Notably we report the preparation of propargyl sulfoximine carbamates to provide an alkyne as a potential click handle. Using Rh2(esp)2 as catalyst and a DOE optimization approach provided considerably increased yields.


Subject(s)
Rhodium , Rhodium/chemistry , Sulfoxides/chemistry , Carbamates/chemistry , Alkynes/chemistry , Catalysis
11.
Biomolecules ; 12(11)2022 10 30.
Article in English | MEDLINE | ID: mdl-36358949

ABSTRACT

Natural monoterpenes and their derivatives are widely considered as effective ingredients for the design and production of new biologically active compounds with high antioxidant, antimicrobial and anti-protozoa properties. In this study, we synthesized two series of thiotherpenoids "sulfide-sulfoxide-sulfone", with different bicyclic monoterpene skeleton (bornane and pinane) structures. The effect of the obtained compounds on platelet aggregation was investigated by using the molecular docking technique. The obtained data revealed that all the synthesized compounds may act as potential inhibitors of platelet aggregation. Moreover, the studied sulfides have shown high antioxidant activity as revealed by lipid peroxidation (LPO) process inhibition in a non-cellular substrate containing animal lipids. The sulfides were able to inhibit erythrocyte oxidative hemolysis, to reduce the accumulation of secondary LPO products in cells and to prevent the oxidation of native oxyhemoglobin. Additionally, the corresponding sulfones and sulfoxides exhibited insignificant antioxidant activity. However, the sulfides were found to exhibit significant antiaggregant and anticoagulant effects. These findings suggest as well that the sulfides could serve as a leader compound for future research and possible practical applications.


Subject(s)
Antioxidants , Fibrinolytic Agents , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Docking Simulation , Fibrinolytic Agents/pharmacology , Anticoagulants/pharmacology , Sulfoxides/chemistry , Sulfones/chemistry , Sulfides/chemistry
12.
Angew Chem Int Ed Engl ; 61(52): e202213872, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36315415

ABSTRACT

Sulfoxides and sulfinamides represent versatile sulfur functional groups found in ligands, chiral auxiliaries, and bioactive molecules. Canonical two-component syntheses, however, rely on substrates with a preinstalled C-S bond and impede efficient and modular access to these sulfur motifs. Herein is presented the application of an easily prepared, bench-stable sulfoxide reagent for one-pot, three-component syntheses of sulfoxides and sulfinamides. The sulfoxide reagent donates the SO unit upon the reaction with a Grignard reagent (RMgX) as a sulfenate anion (RSO- ). While subsequent trapping reactions of this key intermediate with carbon electrophiles provide sulfoxides, a range of tertiary, secondary, and primary sulfinamides can be prepared by substitution reactions with electrophilic amines. The syntheses of sulfinamide analogs of amide- and sulfonamide-containing drugs illustrate the utility of the method for the rapid preparation of medicinally relevant molecules.


Subject(s)
Sulfoxides , Sulfur , Sulfoxides/chemistry , Indicators and Reagents , Stereoisomerism
13.
Angew Chem Int Ed Engl ; 61(43): e202210525, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36006859

ABSTRACT

The intermediate oxidation state of sulfoxides is central to the plethora of their applications in chemistry and medicine, yet it presents challenges for an efficient synthetic access, limiting the structural diversity of currently available sulfoxides. Here, we report a data-guided development of direct decarboxylative sulfinylation that enables the previously inaccessible functional group interconversion of carboxylic acids to sulfoxides in a reaction with sulfinates. Given the broad availability of carboxylic acids and the growing synthetic potential of sulfinates, the direct decarboxylative sulfinylation is poised to improve the structural diversity of synthetically accessible sulfoxides. The reaction is facilitated by a kinetically favored sulfoxide formation from the intermediate sulfinyl sulfones, despite the strong thermodynamic preference for the sulfone formation, unveiling the previously unknown and chemoselective radicalophilic sulfinyl sulfone reactivity.


Subject(s)
Carboxylic Acids , Sulfoxides , Sulfoxides/chemistry , Sulfones/chemistry , Oxidation-Reduction , Metals
14.
Nat Commun ; 13(1): 4793, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35970848

ABSTRACT

Conformational isomerization can be guided by weak interactions such as chalcogen bonding (ChB) interactions. Here we report a catalytic strategy for asymmetric access to chiral sulfoxides by employing conformational isomerization and chalcogen bonding interactions. The reaction involves a sulfoxide bearing two aldehyde moieties as the substrate that, according to structural analysis and DFT calculations, exists as a racemic mixture due to the presence of an intramolecular chalcogen bond. This chalcogen bond formed between aldehyde (oxygen atom) and sulfoxide (sulfur atom), induces a conformational locking effect, thus making the symmetric sulfoxide as a racemate. In the presence of N-heterocyclic carbene (NHC) as catalyst, the aldehyde moiety activated by the chalcogen bond selectively reacts with an alcohol to afford the corresponding chiral sulfoxide products with excellent optical purities. This reaction involves a dynamic kinetic resolution (DKR) process enabled by conformational locking and facile isomerization by chalcogen bonding interactions.


Subject(s)
Sulfoxides , Sulfur , Aldehydes , Isomerism , Molecular Conformation , Sulfoxides/chemistry , Sulfur/chemistry
15.
Proc Natl Acad Sci U S A ; 119(29): e2207690119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858329

ABSTRACT

The N-terminal region of the huntingtin protein, encoded by exon-1 (httex1) and containing an expanded polyglutamine tract, forms fibrils that accumulate in neuronal inclusion bodies, resulting in Huntington's disease. We previously showed that reversible formation of a sparsely populated tetramer of the N-terminal amphiphilic domain, comprising a dimer of dimers in a four-helix bundle configuration, occurs on the microsecond timescale and is an essential prerequisite for subsequent nucleation and fibril formation that takes place orders of magnitude slower on a timescale of hours. For pathogenic httex1, such as httex1Q35 with 35 glutamines, NMR signals decay too rapidly to permit measurement of time-intensive exchange-based experiments. Here, we show that quantitative analysis of both the kinetics and mechanism of prenucleation tetramerization and aggregation can be obtained simultaneously from a series of 1H-15N band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence (SOFAST-HMQC) correlation spectra. The equilibria and kinetics of tetramerization are derived from the time dependence of the 15N chemical shifts and 1H-15N cross-peak volume/intensity ratios, while the kinetics of irreversible fibril formation are afforded by the decay curves of 1H-15N cross-peak intensities and volumes. Analysis of data on httex1Q35 over a series of concentrations ranging from 200 to 750 µM and containing variable (7 to 20%) amounts of the Met7O sulfoxide species, which does not tetramerize, shows that aggregation of native httex1Q35 proceeds via fourth-order primary nucleation, consistent with the critical role of prenucleation tetramerization, coupled with first-order secondary nucleation. The Met7O sulfoxide species does not nucleate but is still incorporated into fibrils by elongation.


Subject(s)
Huntingtin Protein , Protein Multimerization , Exons , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Kinetics , Protein Domains , Sulfoxides/chemistry
16.
Angew Chem Int Ed Engl ; 61(37): e202209272, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35831972

ABSTRACT

Optically pure sulfoxides are noteworthy compounds applied in a wide range of industrial fields; however, the biocatalytic deracemization of racemic sulfoxides is challenging. Herein, a high-enantioselective methionine sulfoxide reductase A (MsrA) was combined with a low-enantioselective styrene monooxygenase (SMO) for the cyclic deracemization of sulfoxides. Enantiopure sulfoxides were obtained in >90 % yield and with >90 % enantiomeric excess (ee) through dynamic "selective reduction and non-selective oxidation" cycles. The cofactors of MsrA and SMO were subsequently regenerated by the cascade catalysis of three auxiliary enzymes through the consumption of low-cost D-glucose. Moreover, this "one-pot, one-step" cyclic deracemization strategy exhibited a wide substrate scope toward various aromatic, heteroaromatic, alkyl and thio-alkyl sulfoxides. This system proposed an efficient strategy for the green synthesis of chiral sulfoxide.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Catalysis , Oxidation-Reduction , Regeneration , Stereoisomerism , Sulfoxides/chemistry
17.
Org Biomol Chem ; 20(29): 5836-5844, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35838682

ABSTRACT

Sulfoxide-containing molecules are an important class of compounds in the pharmaceutical industry and many efforts have been made to develop new and green protocols, targeting the chemoselective transformation of sulfides into sulfoxides. Photochemistry is a rapidly expanding research field employing light as the energy source. Photochemical aerobic processes possess additional advantages to photochemistry and may find applications in the chemical industries. Herein, a 370 nm catalyst-free aerobic protocol was developed, using 2-Me-THF as the green solvent. At the same time, two low-catalyst-loading anthraquinone-based processes (under a CFL lamp or 427 nm irradiation) in 2-Me-THF were developed. Furthermore, a broad range of substrates was tested. We also implemented our protocols towards the synthesis of the pharmaceutical active ingredients (APIs) sulforaphane and modafinil.


Subject(s)
Sulfides , Sulfoxides , Isothiocyanates , Modafinil , Oxidation-Reduction , Sulfides/chemistry , Sulfoxides/chemistry
18.
Angew Chem Int Ed Engl ; 61(31): e202204922, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35641436

ABSTRACT

We report here the use of simple and readily available alkyl sulfoxides as precursors to radicals and their application in the preparation of pyridine derivatives. We show that alkyl sulfoxides, N-methoxy pyridinium salts and fluoride anions form electron donor-acceptor (EDA) complexes in solution, which, upon visible light irradiation, undergo a radical chain process to afford various pyridine derivatives smoothly. This reaction displays broad scope with respect to both sulfoxides and N-methoxy pyridiniums. The synthetic versatility of sulfoxides as a handle in chemistry adds to their power as radical precursors. Glycosyl sulfoxides are converted to the corresponding pyridyl C-glycosides with high stereoselectivities. Computational and experimental studies provide insights into the reaction mechanism.


Subject(s)
Glycosides , Sulfoxides , Glycosides/chemistry , Glycosylation , Light , Pyridines , Sulfoxides/chemistry
19.
J Org Chem ; 87(10): 6942-6950, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35512330

ABSTRACT

Sulfoxides are actively engaged as versatile synthetic building blocks, chiral ligands, bioactive molecules, and function materials. However, their oxidative syntheses from thioethers are inevitably impeded by overoxidation, excess oxidants, and the tedious preparation of thioethers. To address these shortcomings, we report herein a highly selective electrochemical sulfoxidation reaction featuring the use of simple starting materials, i.e., thiols and alkyl halides, in a single operation.


Subject(s)
Sulfhydryl Compounds , Sulfoxides , Ligands , Oxidation-Reduction , Sulfhydryl Compounds/chemistry , Sulfides/chemistry , Sulfoxides/chemistry
20.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(4): 190-205, 2022.
Article in English | MEDLINE | ID: mdl-35400695

ABSTRACT

Biaryl synthesis continues to occupy a central role in chemical synthesis. From blockbuster drug molecules to organic electronics, biaryls present numerous possibilities and new applications continue to emerge. Transition-metal-catalyzed coupling reactions represent the gold standard for biaryl synthesis and the mechanistic steps, such as reductive elimination, are well established. Developing routes that exploit alternative mechanistic scenarios could give unprecedented biaryl structures and expand the portfolio of biaryl applications. We have developed metal-free C-H/C-H couplings of aryl sulfoxides with phenols to afford 2-hydroxy-2'-sulfanylbiaryls. This cascade strategy consists of an interrupted Pummerer reaction and [3,3] sigmatropic rearrangement. Our method enables the synthesis of intriguing aromatic molecules, including oligoarenes, enantioenriched dihetero[8]helicenes, and polyfluorobiaryls. From our successes in aryl sulfoxide/phenol couplings and a deeper understanding of sigmatropic rearrangements for biaryl synthesis, we have established related methods, such as aryl sulfoxide/aniline and aryl iodane/phenol couplings. Overall, our fundamental interests in underexplored reaction mechanisms have led to various methods for accessing important biaryl architectures.


Subject(s)
Phenol , Sulfoxides , Metals/chemistry , Sulfoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...